30 research outputs found

    Saposin C Coupled Lipid Nanovesicles Specifically Target Arthritic Mouse Joints for Optical Imaging of Disease Severity

    Get PDF
    Rheumatoid arthritis is a chronic inflammatory disease affecting approximately 1% of the population and is characterized by cartilage and bone destruction ultimately leading to loss of joint function. Early detection and intervention of disease provides the best hope for successful treatment and preservation of joint mobility and function. Reliable and non-invasive techniques that accurately measure arthritic disease onset and progression are lacking. We recently developed a novel agent, SapC-DOPS, which is composed of the membrane-associated lysosomal protein saposin C (SapC) incorporated into 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipid nanovesicles. SapC-DOPS has a high fusogenic affinity for phosphatidylserine-enriched microdomains on surfaces of target cell membranes. Incorporation of a far-red fluorophore, CellVue Maroon (CVM), into the nanovesicles allows for in vivo non-invasive visualization of the agent in targeted tissue. Given that phosphatidylserine is present only on the inner leaflet of healthy plasma membranes but is “flipped” to the outer leaflet upon cell damage, we hypothesized that SapC-DOPS would target tissue damage associated with inflammatory arthritis due to local surface-exposure of phosphatidylserine. Optical imaging with SapC-DOPS-CVM in two distinct models of arthritis, serum-transfer arthritis (e.g., K/BxN) and collagen-induced arthritis (CIA) revealed robust SapC-DOPS-CVM specific localization to arthritic paws and joints in live animals. Importantly, intensity of localized fluorescent signal correlated with macroscopic arthritic disease severity and increased with disease progression. Flow cytometry of cells extracted from arthritic joints demonstrated that SapC-DOPS-CVM localized to an average of 7–8% of total joint cells and primarily to CD11b+Gr-1+ cells. Results from the current studies strongly support the application of SapC-DOPS-CVM for advanced clinical and research applications including: detecting early arthritis onset, assessing disease progression real-time in live subjects, and providing novel information regarding cell types that may mediate arthritis progression within joints

    Hand osteoarthritis: clinical phenotypes, molecular mechanisms and disease management

    Get PDF
    Osteoarthritis (OA) is a highly prevalent condition and the hand is the most commonly affected site. Patients with hand OA frequently report symptoms of pain, functional limitations, and frustration in undertaking everyday activities. The condition presents clinically with changes to the bone, ligaments, cartilage and synovial tissue, which can be observed using radiography, ultrasonography or MRI. Hand OA is a heterogeneous disorder and is considered to be multifactorial in aetiology. This review provides an overview of the epidemiology, presentation and burden of hand OA, including an update on hand OA imaging (including the development of novel techniques), disease mechanisms and management. In particular, areas for which new evidence has substantially changed the way we understand, consider and treat hand OA are highlighted. For example, genetic studies, clinical trials and careful prospective imaging studies from the past 5 years are beginning to provide insights into the pathogenesis of hand OA that might uncover new therapeutic targets in disease

    A window on disease pathogenesis and potential therapeutic strategies: molecular imaging for arthritis.

    Get PDF
    Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis

    Molecular imaging techniques for rheumatology: Paving the way for novel molecular therapies

    No full text
    Anatomical imaging using radiological techniques have underpinned the investigation and monitoring of treatment in modern clinical practice. Molecular imaging of inflammatory targets and pathways offers a unique insight into in vivo disease pathogenesis and the discovery and evaluation of novel therapeutic targets. This review summarizes current clinical and preclinical imaging strategies in inflammatory joint disease, in particular rheumatoid arthritis, and focuses on optical imaging as an example of a promising novel molecular imaging modality. Optical imaging has already been developed for in vitro and ex vivo applications in molecular and cellular biology (e.g., fluorescence confocal microscopy), but is still at an early stage of development as a technique for in vivo imaging of arthritis. This innovative technique, therefore, has significant potential to provide noninvasive molecular imaging of arthritis and serves as a demonstration of the role that in vivo imaging techniques can play in evaluating arthritis. © 2012 Future Medicine Ltd

    In vivo optical imaging in arthritis--an enlightening future?

    No full text
    In vivo molecular optical imaging has significant potential to delineate and measure, at the macroscopic level, in vivo biological processes that are occurring at the cellular and molecular level. Optical imaging has already been developed for in vitro and ex vivo applications in molecular and cellular biology (e.g. fluorescence confocal microscopy), but is still at an early stage of development as a whole-animal in vivo imaging technique. Both sensitivity and spatial resolution remain incompletely defined. Rapid advances in hardware technology and highly innovative reporter probes and dyes will be expected to deliver significant insight into perturbations of molecular pathways that occur in disease, ultimately with the potential of translating into future molecular imaging techniques for patients with arthritis. This review will focus on currently available technologies for live in vivo animal optical imaging, including fluorescence reflectance imaging, potential novel tomographic techniques, bioluminescence reporter technology and potential novel labelling techniques, highlighting in particular the potential application of in vivo fluorescence imaging in arthritis

    In vivo fluorescence imaging of E-selectin: quantitative detection of endothelial activation in a mouse model of arthritis.

    No full text
    OBJECTIVE: In vivo optical imaging can delineate at the macroscopic level processes that are occurring at the cellular and molecular levels. E-selectin, a leukocyte adhesion molecule expressed on endothelium, is induced by tumor necrosis factor α (TNFα) and other cytokines involved in the pathogenesis of rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) in mice is widely used to study the disease mechanisms and identify new treatments for RA. The purpose of this study was to demonstrate E-selectin-targeted fluorescence imaging in vivo in a mouse model of paw edema generated by local injection of TNFα as well as in mice with CIA. METHODS: Animals with either CIA or TNFα-induced paw edema were injected with anti-E-selectin or control antibodies labeled with a DyLight 750-nm near-infrared (NIR) probe. In vivo imaging studies were undertaken using an NIR optical imaging system, and images were coregistered with plain radiographic images. RESULTS: The mean fluorescence intensity measured over the time-course of TNFα-induced edema demonstrated a 1.97-fold increase (P<0.001) in signal in inflamed paws at 8 hours following injection of anti-E-selectin antibody, as compared to that in the isotype control. In the CIA model, a 2.34-fold increase in E-selectin-targeted signal was demonstrated (P<0.01). Furthermore, significant E-selectin-targeted signal was observed in the paws of animals immunized with collagen that did not display overt signs of arthritis. CONCLUSION: E-selectin-targeted fluorescence in vivo imaging is a quantifiable method of detecting endothelial activation in arthritis and can potentially be applied to the quantification of disease and the investigation of the effects of new therapies. Importantly, this approach may also be useful for the detection of subclinical disease in RA

    Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain.

    No full text
    The origin of pain in osteoarthritis is poorly understood, but it is generally thought to arise from inflammation within the innervated structures of the joint, such as the synovium, capsule and bone. We investigated the role of nerve growth factor (NGF) in pain development in murine OA, and the analgesic efficacy of the soluble NGF receptor, TrkAD5. OA was induced in mice by destabilisation of the medial meniscus and pain was assessed by measuring hind-limb weight distribution. RNA was extracted from joints, and NGF and TNF expressions were quantified. The effect of tumour necrosis factor (TNF) and neutrophil blockade on NGF expression and pain were also assessed. NGF was induced in the joints during both post-operative (day 3) and OA (16weeks) pain, but not in the non-painful stage of disease (8weeks post-surgery). TrkAd5 was highly effective at suppressing pain in both phases. Induction of NGF in the post-operative phase of pain was TNF-dependent as anti-TNF reduced NGF expression in the joint and abrogated pain. However, TNF was not regulated in the late OA joints, and pain was not affected by anti-TNF therapy. Fucoidan, by suppressing cellular infiltration into the joint, was able to suppress post-operative, but not late OA pain. These results indicate that NGF is an important mediator of OA pain and that TrkAd5 represents a potent novel analgesic in this condition. They also suggest that, unlike post-operative pain, induction of pain in OA may not necessarily be driven by classical inflammatory processes
    corecore